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TURBULENT TEMPERATURE FIUCTUATIONS AND TWO-
DIMENSTONAT, HEAT TRANSFER IN A
UNIFORM SHEAR FLOW
by Jay Fox

Iewis Research Center

SUMMARY

Correlation equations for statistically homogeneous fluctustions of ve-
locity and temperature at two points in an infinite uniform shear flow are de-
rived with allowance for a temperature gradlent in an arbitrary direction in a
plane normal to the flow direction. The initially excited isotropic turbulence
decays and becomes anisotropic with time. After Fourier transformations are
introduced, the resulting spectral equatlions asre solved for the case of weak
turbulence wherein triple correlations are neglected compared with double cor-
relations. Spectra of turbulent heat transfer and temperature fluctuation are
calculated. TFor large nondimensionsl velocity gradients, the thermal eddy dif-
fusivity in the direction normal to the velocity gradient is much larger than
that in the direction of the veloecity gradient. The thermal eddy diffusivity
in the veloecilty gradient direction tends to equal the momentum eddy diffusivity
at large velocity gradients.

INTRODUCTION

Phenomenological theories of turbulence, which are reviewed in reference 1,
have recently received support from statistical turbulence theory. In a uni-
form shear flow with decaying turbulence, a tendency of the ratio of eddy dif-
fusivities for heat and momentum to approach unity was found for conditions
that correspond roughly to steady channel flow (ref. 2). Developments of this
nature do not form a basis for supplanting phenomenological theories, which are
the only practical means of organizing quantities of experimental evidence.
Rather, statistical theories further the understanding of turbulence and may,
in some instances, point the way for new extensions of the phenomenological
theories when no experimental evidence is available.

A uniform shear flow is described by a constant gradient of mean velocity
in a direction normal to the flow direction. No boundaries are present.
Transient turbulence, which is spatially homogeneous, is initially estaeblished,
for instance, by a wire screen, and the turbulence is later studied when it is



weak enough for the triple correlations of velocity or temperature fluctuations
to be neglected.

Barly statisticael investigations of turbulent heat transfer were concerned
with the isotropic turbulence that arises in the gbsence of a mean velocity
gradient (refs. 3 and 4). For shear flows, numerical values of the velocity
correlations were first presented in reference 5. Additional studies of heat
transfer, pressure fluctuations, and velocity correlations were accomplished in
references 2, 6, and 7. In the present effort, these studies are extended to
include the effects of a temperature gradient with components not only in the
direction of the velocity gradient (the subject of ref. 2) but also in the di-
rection normal to both the velocity vector and the velocity gradient. A simi-
lar arrangement of vectors occurs in a tube flow with circumferential varia-
tions in heat transfer. In the following development, temperature gradient ef-
fects are shown to be separable into componentsj; consequently, the results of
the present investigation supplement those of reference 2.

Several features of stronger turbulence are present in weak turbulent
shear flows, as shown in reference 5. Transfer between eddies of different
sizes 1s present, as is production of turbulence by the action of the mean ve-
locity gradient. The decay of velocity and temperature fluctuations proceeds,
however, despite the production effects since they are not strong enough to
offset dissipation effects.

SYMBOLS
a transverse velocity gradient, dUl/dx2
a* dimensionless transverse velocity gradient, (t - t,)dUy/dxs
b,c transverse temperature gradients, OT/Oxs and OT/dxz, respectively
Jo constant that depends on initial conditions
P,P' arbitrary points
Pr Prandtl number, v/o
P instantaneous pressure
r distance from P to P'
T distance vector from P to P'
Ty component of T
T average temperature
i instantaneous temperature
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transfer term for temperature fluctuations obtained by integrating
K7 985/0kp 1in eq. (25) over angular coordinates of wave number
sphere

time

initial value of &

average velocity component

instantaneous velocity component

fluctuaeting part of velocity component defined by eq. (4)

space coordinate

thermal diffusivity

spectrum functions of Tu; or Tuz defined by eq. (29)

Fourier transform of ?ﬁg defined by eq. (15)

Fourier transform of EI?T defined by eq. (16)

spectrum function of T2 defined by eq. (30)

Fourier transform of T1' defined by eq. (17)

equals 1 for i = j; equals O for 1 % J

eddy diffusivity for momentum transfer defined by eq. (34a)

eddy diffusivity for heat transfer defined by eqs. (34b)

Fourier transform of Tp' defined by eq. (19)

Fourier transform of pt' defined by eq. (20)

spherical coordinate in wave number space

wave nunber

dimensionless wave number, vl/z(t - to)l/2 K

wave number vector

component of wave number vector

kinematic viscosity

dummy varisble



p density

T fluctuating part of temperature defined in eq. (3)

) spherical coordinate in wave nunber space

Qij Fourier transform of ﬁ;ﬁg defined by eq. (18)

Subscripts:

i,3,k values equaling 1, 2, or 3 and designating coordinate directions

(2),(3) scalar quantities that arise from effects of OT/dxp or OT/dxz

Superscripts:

(") point P!

(™) average value

(%) dimensionless quantity

ANATYTTCAT: FORMULATION

The thermal energy equations at two points P and P' can be written for
constant properties as

H S = B__T
and
o ST ZT'
oT k o (2)

St T T T 3 oxg

where ® and T are the instantaneous velocity component and temperature,
respectively. Cartesian components of the position vector =X are designated
by the subscript k, which takes on the values 1, 2, and 3. A repeated sub-
script on a term implies a summation of three terms corresponding to the three
values of the subscript. The symbols t and o represent time and thermal
diffusivity, respectively. A division of instantaneous quantities into steady
and fluctuating components is accomplished by setting

T=T+1 (3)
and

O = Uk + ug (4)

These relatlons are substituted into equation (1), and the resulting equation



1s averaged over a large number of systems that are macroscopically the same
but have random fluctuating quantities that are spatially homogeneous in a
statistical sense (ensemble average). The averaged equations are subtracted
from the unaveraged ones with the result

aT BT BT a'ru,k a?uz . BZT
e Ty T S T g T S - O o ()

vwhere the bar indicates an averaged quantity. The average of a fluctuating
component is necessarily zero. At point P', the equatlion corresponding to
equation (5) can be visualized from equations (1) and (2). In a simllar
manner, the Navier-Stokes equations were treated in reference 5 to yield (at
point P')

dul Ju! At outu! dutu, azu'.
J, o3 %Y 3% 3% 1 3p' 3
St f U 3w Yk Sk Y TOxT T O =g Y o (6)

An equation for Tué is obtained by multiplying equation (5) by ué and equa-

tion (8) by T, adding, and averaging the resulting equation. In the interest
of brevity, the turbulence is assumed weak st this point in the analysis, so
that the triple correlations that arise are neglected compared with the double
correlations. None of the omitted triple correlations is different from that
in reference 2, The averaged equation is

sy o] s 0 STaT
a’t +Uk_ an +1lkujga+ TUIE-S%T‘FU]'KB-}(R'—:
emen Ly
_ .]_._ a?-ir . a Tuj . a Tw J
p ox! v oxt Oxg <@ 0Xpc OXc (7)

J

where the independence of fluctuating quantities at one point from the position
of the other point has been utilized in placing the quantitles inside the
spatial derivative signs. TIn homogeneous turbulence, (B/Bxi)Xk = 3/or,  and

(B/Bxk)xﬁ = -3/dr,. 1f X' =X + F. In the present case of a single steady ve-
locity component Uy and one velocity gradlient dUl/dxz, a simplifying rela-

tion exists:
T
B'ruj duy BTuS

e~ Uk) ok axg 2 org (e

which reduces equation (7) to



du oTu! du
J 1 J OT 1
+d rZBl-l-ukurk ué@leX2=
1 3T dCTuT
_ 1 o1p J
S5 (04 ) (9)

where 51j =1 for j=1 and O for J % 1.

A similar procedure applied to the equations corresponding to equa-

tions (5) and (6) at P' and P ylelds

t —
St t U %1 Fe, Y MYk 5 T T T2 orp
—_ o—
19pt' (@ + ) o%uy T (10)
0 Sri @y o) ory

and, likewise, equation (5) at P and the corresponding equation at P' yield

oTT! duy Sttt BT — - 27!
St dxo 2 orq axk (7" + Tiy) = 2o Ork ory (11)

An additional equation is obtained by applying B/ij to equation (6) and

noting the continulty equation Buj/axj = 0. This produces

Buk BU' dZutuy! 2y !

L Fp! -2 JE J X (12)
1 !' 1 1 T 1
) SXJ SXJ BXJ axk Bij Bxk ij Bxk
Multiplying equation (12) by T, averaging, and introducing Ty = xj - Xj give
1 az—- avy 37g
oS or, T P (13)
Similarly,
2= dU, Sust’
1 O%pT 1 Y2 (1)

Eari éri =2 dXz Brl

Fourler transforms are introduced:

T (%)

Lm r (Rexp(i% - D)ak (15)




o - - - -
u;Tt(r) = Y:’L(K)exp(iK + r)dK (18)
-00
s - - -y >
——— >
T (7)) = f 8(Kk)exp(ik * r)dk (17)
00
\
- had - — s
u.ul(r) = 0s s (K)exp(ik - T)dk (18)
i J ij
AN
00
— — ~
o' (¥) = f ¢(K)exp(ik « T)dK (19)
00
—— b - — -, >
pT'(r) = / ¢'(k)exp(ik - r)dk (20)
w00
where 'Z| = K 1s the wave nunber, which can be Interpreted as the reciprocal
of an eddy size.
The Fourier transforms of equations (9) and (13) are
or; au d au
J %1 V3 oT @1 1 2
ST T, K1 v + P S + 81473 T = o 1k36 = (@ + v)k T3 (21)
and
KiKs au
1, 13 1
"ot =2 TE e T (22)

where dUy/dxp; and OT/dx, are constants. Equation (22) can be subtracted
from equation (21) and ¢ can thus be eliminated from the equations. A simi-
lar procedure applied to equations (10) and (14) ylelds an equation of the same
form for vj. In the present study, the case of r =0, OT/dxo # 0, and

OT/0x3 # O 1is considered so that 1| = ¥j. The symbols a = dU/dx,,
b = BT/BXZ, and ¢ = BT/BX3 are introduced so that the final equations become

oy oy K1Kz 1 5
g_b— - aKl &E = - b(Pzz - CCPZB + {2a KZ - —P? + 1) vk YZ (23)
or or KqK
3 3 173 1
I - 8K YZ = - bPzp - cPzz + 2a 7— To - (ﬁ' + l) VKZYS (24)

and



ér_? - a.Kl %7'5{2— = - ZbTZ - ZCT5 - ZCLKZB (25)

where equation (25) is the Fourier transform of equation (11).

SOLUTION OF SPECTRAL EQUATIONS

Isotropic turbulence and zero temperabture fluctuations are assumed as
initial conditions. Expressions for o5 and @zz that satisfy these initial
conditions have been reported in references 5 and 7. The latter is

i+ [rp + el - 10])% + LY

12ﬂ2(K§ + K%)

P33

X exp{-zv(t - to) E<2 + % aZKJZ_(t - t0)2 + akyrp(t - to)]}

_ o R -3
K8+ [K2 + aKy (t - tO)J2 + k& Kkt

X

2 '
2KoK% -1 Ko 1k + aKl(‘t - to)
2 E G [ T iE T 2 4 2)1/2
(«§ + k8) "k (K& + k&) (k& + K2)
2 2
K K. ko + aki(t - t
+ 3 5 [ban'l 2 77 " tan~L -2 1( 1/20) (26)
(Kl + KS) (K% + K%) (KE + K%)

where Jo and to are constants that depend on the initial conditions.

In reference 7, the solution for @9z = @32, although nonzero, was found
to produce a zero value of Usuz, which was consistent with the lack of a ve-
locity gradient in the xp,xz-plane. Equations (23) and (24) of this investiga-
tion have been solved for the effects of @¢oz by omission of the terms con-
taining @op and @zz. (The linearity of the equations permits the addition
of solutions.) Zero contributions to Tuz and 7Tuz are cbtained from the di-
rect effects of @pz; however, an Indirect effect that does contribute to Tuz
enters equation (24) in the fifth term. This contribution can be traced to the
expression of the pressure effect ¢ in terms of Y5 1n equation (22). The
remaining portion of 7Ye that contributes to Tuz is the same as that re-
ported in reference 2; it is not repeated herein. In the following solutions
to equations (24) and (25), only those expressions that contribute to Tuz or
2 are shown.

For a Prandtl number equal to 1 the Fourier transform of 7Tuz is



_ JOC{'Z]_ + [Kz + aky(t - ‘co)]2 + KQZ

T
3 lZnEaKl(KE + K%)
x expl-2v(t - tg) |«2 - 1 .2,2 s
xpé-2v o) K& + akika(t - tg) + z2 g (t - o)
aK%(t - tg) K%K%
X—K2+K+aK(t—tz|2+K2+(K2+K2>l/2K2
1 2 1 © 3 1 3
K Ko + aky(t -t
X |:tan"l 2 77 - tan=t 2 l( T 20)]
2 2 2 2\-/
(Kl + K5) / (Kl + K3)
K%Kz Ko ks + aky(t - t5))%
YT oy tan=t 172 ~ tan~t ' 1[20:,
K5 + K 2 2 2 2
(1 5) (Kl + KS) (Kl + KS)
For a Prandtl number not equal to 1, vz takes the form (27s)

_ Joc{K:ZL + E<2 + aky(t - to):lz + K%}z

Tz = -
S lZ:n:ZaKl (K% + K%)

[(1/Pr) - 1lvkp 5 K% 2

exp ak] KT + = + K%

]

1 2
2v(t - tg) EZ + aKkiko(t - ton) + 3 a2;<§(t - to)]

Kotakq (t-to)

exp{- _—___[(l/Pr) - 1ly géci + %—2 + K%)}

X

aKl
“2
2
. “1 2 3
ap 2 2+K3K2+§2+K2
Kg + Ky + ak1(t - to)|” + Kg 1 3
+ 1 et aky (¢ - %)

X1

o e )

1 Ko o1 ke t aki(t - tg)
T . B\L/Z e 17z )|t
(K:ZL + K%) (Ki + K%) /

X
'xlx'
AV V)
+

Y
I-—‘RN
+
,__J
X
[TV}
’_l
[AV)
/é;\
]

(27b)



These expressions for Yo and Tz verify the fact that the turbulent
heat-transfer components 7Tu, and 7Tuz arise from temperature gradient com-
ponents in the respective directions OT/oxs and JOT/dxz.

The transform of the portion of ;E' that arises from 6T/8x5 is, for a
Prandtl nunber equal to 1,

A
2
Jocz{,{ ol TG ] %}

&, « =
(3) 12:r2a2/<§ (K% + K%)

X exp{— 2v(t - to) [K2 + akyka(t - o) + %— aZKi(t - to)zj}

.,
| aZKl(t_—__‘tQ)’v? K&K3

‘ 2 2 + x2
K& + E<2+aKl(‘t—’to)J + kg KT K

2
K -
x ltan—1 2 - tan-t 2 * aKl(t tp) (28)
KE o+ K 1/2 K2 + K2 1/2
1 3 1 3

The other portion 8(2) that is a result of OT/dxz 1is the same as that re-
ported in reference 2.

N The convenience of interpreting functions of « instead of functions of
K was pointed out in reference 8. Following that suggestion, the integrations
that lead to 7T2_ and Tuz are accomplished in two steps, the first of which

(3)

involves integrating over the angular coordinates of a wave number sphere:

s 2
/ T3(K,9,0) k% sin € dp de (29)
0 0
7 2
6(5)(K,m,9)K2 sin 6 do de (30)
(0} 0

A display of I'z and A 3) shows how the contributions to 7TUz and T?S)

I'z( k)

If

A(3) ()

are distributed among wave numbers or eddy sizes, since

Tuz = Iz dk  and ?253_)=‘/,[ 85y K ()

0 0

10



COMPUTED SPECTRA

Numerically calculated spectra of Tuz and T%S) are displayed in di-

mensionless form in figures 1 and 2 for several values of the dimensionless ve-
locity gradient a*. Since time enters all the dimensionless representations,

~B & =t - ty) dUyidey

I'3 =2t - tylylllg0)
— = Ty At -tollu,h
from ref, 2

-8

2

r

1"; or

o V2 -1 V2

s =

(a) Prandt! number, 1.
Figure L. - Dimensionless spectra of TU3 and TUy for uniform transverse
velocity and temperature gradients and for various Prandtl numbers.

the curves for various a* show the effect of velocity gradient on the spectra
at any given time while the turbulence decays. Dashed curves correspond to
those in reference 2 because of separability of solutions. For large Prandtl
numbers, the spectra of 7Tuz 1n figure 1 peak at large wave numbers (small

eddy sizes).

Isotropic spectra (a* = 0) in figure 1 are the same for Tuz and Tup,

as previously reported in reference 4. The behavior of the peaks of the spec-
tra of Tuz and Tu; is similar to that of the respective production terms

cpzz and bepp in equations (23) and (24); ¢@pp decreases and shifts toward
lower wave numbers as the velocity gradient increases, whereas @zz Increases

11



markedly with little shift (see fig. 5 of ref. 5 and fig. 2 of ref. 7).

A shift to higher wave numbers in the spectra of T2 with increasing ve-
locity gradient is evident in figure 2 both at peak and at moderate values on

-.028
-

2 = (t - 1) dUy/dx,

=2t - 1Tl 0)

3"

r

2 3 4
K =1t - 1) 12

(b} Prandtl number, 0.01.

Figure 1. - Continued. Dimensionless spectra of Tug and U, for uni-
form transverse velocity and temperature gradients and for various Prangt)

numbers.

the high wave number side; the shift results in an elongation of the spectra to-
ward high wave numbers. This spectral change is evidently due to a transfer of
activity from low wave numbers (large eddies) to high wave numbers (small
eddies) by the action of the second term in equation (25), which is known as
the transfer term. The name stems from the Fourier transform relation

12



0

which becomes, for r = O,

%

oTT! 05 > oy

= - K xp(ik » r)dK 32
s 51‘1 1 SKZ e ( ) ( )

=00

o0

B
Ky TKZ dk = 0 (33)
—00

Similar results can be obtained from corresponding terms in equations (23)
and (24). Thus, these terms contribute nothing to JdTuz/ot, oTuz/ot, and

BTZ/Bt, but they do alter spectral distributions.

The integration shown in equation (33) can be accomplished in two steps by

vt - 1) T'5to0)

3

r

-.08

=07

X
(=]
(=

R
o
Ul

K
(=]
P

-.03

-.02

-.01

@ = (t - to) dUy/dxy

1 2 3 4 5
* 12 -t l2

1.4
{c) Prandtl number, 10.

Figure 1. - Concluded. Dimensionless spectra of ?_u3 and -Hl—z for uni-
form transverse velocity and temperature gradients and for various Prandtl
numbers.
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L0357~ 2 = (t - t5) dUfdx,

L030—

A (g v 3/UecA

. L2
s 50 ——= D vA(Z)I(Jobz) from ref. 2
20
L, & 02—
3
o
)
< .0

2.4 2.8 3.2 3.6 4.0

2.0
K V-1 )12

Figure 2. - Dimensionless spectra of T2 and T2 for uniform transverse velocity and temperature
gradients. Prandtl number, 1. 3) 2

first integrating over the angular coordinates of a wave number sphere and then
integrating over the wave numbers. Of course, the second step yields a trivial
result, but the first result is a_spectral transfer function. The integrated
transfer term corresponding to T2 is shown in figure 3 for a Prandtl number
of 1. Most of the transfer of activity is out of the low wave number spectrum
and into the high wave number spectrum, but some reverse transfer occurs at low
wave numbers and low velocity gradients. In reference 2 this activity transfer
was attributed to a vortex-stretching process, which might also involve vortex
compression at low velocity gradients and thereby produce some reverse trans-

fer.

PRODUCTION, TEMPERATURE FLUCTUATION,
AND CONDUCTION SPECTRA

Production of temperature fluctuations by the third and the fourth terms
in equation (25) is interpreted as a result of the action of the temperature
gradient on the respective turbulent heat transfer, Tuz and Tuz. Conduction
or dissipation in the last term reduces local temperature peaks by molecular
heat conduction away from hot spots. Production and conduction terms can be
integrated over a wave number sphere to yield spectral distributions in the___
same manner as that used to obtain the temperature fluctuation spectra of 12
in figure 2. After normalization of the peak values to unity, all three spec~-
tra are shown in figure 4 for a Prandtl number of 1 and a high velocity gradient

14



.004—

a* = (t 'to) dUI/dXZ

.002

0
[}
=
s -.002
)
haa
- ey 2
004 T;B) v Tt(3)/(.]0C )
\\ // ———  Tyg =vZTypltiob? from ref. [2]
-.006 |— \/
o0 | | | | | | | | |
0 0 .4 .8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0
P “ullz(t - to)llzK
Figure 3. - Dimensionless spectra of transfer terms in spectral equations for T2 and T2 . Prandtl
number, 1. . G @2
/,,ﬂgctuation /TDissipation
i
. 8
<
S
. 8
<
~ ~ - ~-~

12 16 2.0 3.6 4.0

L 1 T -

Figure 4. - Comparison of production, temperature fiuctuation, and conduction spectra from spectral

equations for Té) and T(ZZ) (solid and dashed curves, respectively) at large velocity gradient.
Prandti number, 1. a* = (t - tg) dUy/dx, =50. (Curves normalized to same height.)
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(a* = 50). Actually, two sets of spectra corresponding to the separate effects
of OT/0xz and OT/oxp (from ref. 2) are displayed in figure 4. For low ve-
locity gradients, the three spectra are close together, like those in fig-

ure 4 of reference 2. For a large velocity gradient, production, fluctuation,
and conduction spectra in the present figure 4 peak at successively greater

wave numbers.

Al1]l these effects take place as the turbulence and the turbulent tempera-
ture fluctuations decay. Fluctuations are produced in the large eddies (low
wave numbers), transferred to the small eddies (high wave numbers), and finally

dissipated by molecular conduction.

— 77 \12
7”3/(“3%3))1,2

Th”z/(“%’(ZZ)) from ref. 2

a* =(t- to) dU]./dXZ
Figure 5. - Temperature-velocity correlation coefficients as a function of dimensionless velocity gradient.
Prandtl number, 1.

TEMPERATURE-VELOCITY CORRELATION COEFFICIENT

A temperature-velocity correlation coefficient introduced in reference 3
is modified herein to account for the separate effects of OT/dxs and OT/dxz.
Two dimenslonless coefficients are utilized,

——

TL'LZ

(a'é = )1/2
(2)

— 1/2
(uz T?B))

and

16



the former being the same as that presented in reference 2. The latter coef-
ficient has been calculated from integrals of the curves in figures 1 and 2 and
those in figure 2 of reference 7, all for a Prandtl number of 1. Figure 5 is

a display of both correlations as a function of velocity gradient, starting
with the perfect correlation value of -1 that was obtained in reference 4 for
isotropic turbulence (a* = 0). One correlation coefficient

et

TU.S

— 172
(P% T%S))

achieves an asymptotic value of -0.9, whereas the other, by decreasing mono-
tonically, shows a continuous loss of correlation between the temperature and

velocity fluctuations as a¥ dincreases.

100!_'

<hizfe
eh(z)/e from ref. 2 Pr=via

€3¢ O €niafe

1 - 10 - 100
a* = (t - to) dUyldxy

Figure 6. - Ratio of eddy diffusivity for heat transfer to that for momentum transfer
as a function of dimensionless velocity gradient.

EDDY DIFFUSIVITIES

The eddy diffusivities of momentum and heat (in the xp- and xz-directions)
are defined by

17



€ = =
30 Jaxg (54a)

FOREE- v |

(34p)

€n(3) = -

1
:
s I
oM

>

Ratios of eddy diffusivities play & large part in phenomenological theories of
steady turbulent flows. A unity value of eh(z)/e produces the best agreement
between experiment and analysis for Prandtl numbers that are not too low

(ref. 1). 1In the transient turbulence analysis of reference 2, a similar ten-
dency of eh(g)/e toward unity is obtained at high values of &a*, which cor-
respond roughly to steady turbulent flows. Recent phenomenological analyses
(refs. 9 and 10) of circumferential variations of heat transfer in round tubes
are based on an assumption of equal eddy diffusivities in the radial and the
circumferential directions; that is, €n(2) = €n(3) in the present notation.

A dimensiocnless eddy diffusivity v5/2(t - to)3/2 eh(3)/Jo can be ob-
tained by integrating the curves in figure 1. Integration of the curves in
reference 5 for € 1s also necessary for the calculation of eh(g)/e, which is
displayed in figure 6 along with eh<2)/e from reference 2. Although the
curves for the two ratios are not widely separated at low velocity gradients,
which are near the isotropic case (a¥ = 0), large velocity gradients produce
values of eh(S)/e that are two orders of magnitude greater than values of

eh(g)/e, except for low Prandtl numbers.

The relative magnitudes of e€p(3) and €p(z) can be compared with the
magnitudes of the turbulent velocity fluctuations (or turbulent energy compo-

nents) in the two directions u% end u8. References 5 and 7 show that Eg

proceeds rapidly but asymptotically toward zero at large velocity gradients,

whereas u2 decreases slowly from the average of the energy components
uiui/B, which increases with velocity gradient. Likewise, from physical rea-
soning, it is clear that the thermal eddy diffusivity is greater in the direc-
tion of greater velocity fluctuations.

The existence of greater u% than u% has long been suspected (ref. 11)

and, In recent times, has been verified experimentally in tube and channel flow
(refs. 12 and 13) and in boundary layers (ref. 14). In fact, the ordering of
all three components of turbulent energy, from largest to smallest, is the same

ui, ug, ug) in those measurements and in the present theory (ref. 7) at large
velocity gradients. Apparently, not all features of boundary layers and tube
flow depend on the presence of boundaries.

18



The transient analysis was compared in reference 2 with a steady flow in a
boundary layer or tube by taking k¥ ~ 1 from turbulent cnergy spectral curves
and 0.3 & as a representative length, where & is the boundary-layer thick-
ness or the tube radius. If U 1s an average velocity and dUl/dxz ~ U/5,
then a* is of the order of 0.1 Ud/v. This implies that eh(B)/e is much
larger than eh(z)/e for Reynolds numbers of 10% and over that are encountered
in practice.

The results of the present analysis, together with existing velocity-
fluctuation measurements, provide no support for an assumption of equal thermal
eddy diffusivities in the radisl and the circumferential directions
(eh(z) = €h(3)) in turbulent tube flow. Instead, the relation €n(3) > €n(2)

is indicated.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, February 27, 1964

REFERENCES

1. Lin, C. C., ed.: Turbulent Flows and Heat Transfer. Princeton Univ. Press,
1959.

2. Deissler, Robert G.: Turbulent Heat Transfer and Temperature Fluctuations
in a Field with Uniform Velocity and Temperature Gradients. Int. J. Heat
Mass Trans., vol. 6, 1963, pp. 257-270.

3. Corrsin, Stanley: Heat Transfer in Isotropic Turbulence. J. Appl. Phys.,
vol. 23, 1952, pp. 113-118.

4, Dunn, D. W., and Reid, W. H.: Healt Transfer in Isotropic Turbulence During
the Final Period of Decay. NACA TN 118G, 1958.

S. Deissler, Robert G.: Effects of Inhomogeneity and of Shear Flow in Weak
Turbulent Fields. Phys. Flulds, vol. 4, 1961, pp. 1187-1198.

8. Deissler, Robert G.: Pressure Fluctuations in a Weak Turbulent Field With a
Uniform Transverse Velocity Gradient. Phys. Flulds, vol. 5, 1962, pp.
1124-1125.

7. Fox, Jay: Velocity Correlations in Weak Turbulent Shear Flow. Phys.
Fluids, vol. 7, 1964, pp. 562-564.

8. Batchelor, G. K.: The Theory of Homogeneous Turbulence. Cambridge Univ.
Press, 1953.

9. Reynolds, W. C.: Turbulent Heat Transfer in a Circular Tube with Variable

Circumferential Heat Flux. Int. J. Heat Mass Trans. vol. 6, 1963, pp.
445-454.

19



10.

]—]—.

1z,

13.

14.

20

Sparrow, E. M., and Iin, S. H.: Turbulent Heat Transfer in a Tube with
Circumferentially-Varying Temperature or Heat Flux. Int. J. Heat Mass

Trans., vol. 6, 1963, pp. 866-867.

Prandtl, L.: Turbulent Flow. NACA TM 435, 1927,

Laufer, John: The Structure of Turbulence in Fully Developed Pipe Flow.

NACA TR 1174, 1954. :

Ruetenik, J. Ray: Investigation of Equilibrium Flow in a Slightly Diver-~

gent Channel. John Hopkins Univ., Rep. I-19, 1954.

Klebanoff, P. S.: Characteristics of Turbulence in a Boundary Layer with

Zero Pressure Gradient. NACA TR 1247, 1955.

NASA -Langley, 1964

E-2360



“The acronautical and space activities of the United States shall be
conducted 5o as to contribute . . . to the expansion of buman knowl-
edge of phenomena in the atmosphere and space. The Administration
shall provide for the widest practicable and appropriate dissemination
of information concerning its activities and the results thereof.”

—NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered
important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless
of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distri-
bution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Technical information generated in con-
nection with a NASA contract or grant and released under NASA auspices.

TECHNICAL TRANSLATIONS: Information published in a foreign
language considered to merit NASA distribution in English.

TECHNICAL REPRINTS: Information derived from NASA activities
and initially published in the form of journal articles.

SPECIAL PUBLICATIONS: Information derived from or of value to
NASA activities but not necessarily reporting the results -of individual
NASA-programmed scientific efforts. Publications include conference
proceedings, monographs, data compilations, handbooks, sourcebooks,
and special bibliographies.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546



